Table 7. Regression equations based on active-channel width (W_{ac}) [Abbreviations: n, number of stations used in the regression analysis; Q_T , annual peak discharge, in cubic feet per second, for recurrence interval T, in years; W_{ac} , width of active channel, in feet; SEP, standard error of prediction; EYR, equivalent years of record. Symbol: --, not applicable]

Regression Equation	Eri	or Variance, log u	Average	Average							
	Average sampling	Model	Measurement	SEP, in log units	SEP, in percent	EYR					
West Region (n = 93)											
$Q_2 = 1.11 \ W_{ac}^{1.74}$	0.0013	0.040	0.023	0.252	63.5	1.3					
$Q_5 = 2.46 W_{ac}^{1.63}$.0013	.038	.020	.244	61.1	1.8					
$Q_{10} = 3.75 \ W_{ac}^{1.58}$.0015	.040	.018	.245	61.4	2.2					
$Q_{25} = 5.81 \ W_{ac}^{1.51}$.0017	.045	.017	.252	63.4	2.8					
$Q_{50} = 7.61 \ W_{ac}^{1.48}$.0019	.050	.016	.261	66.2	3.0					
$Q_{100} = 9.57 \ W_{ac}^{1.45}$.0022	.056	.016	.272	69.6	3.2					
$Q_{200} = 11.8 \ W_{ac}^{1.43}$.0024	.064	.015	.286	73.8	3.3					
$Q_{500} = 15.0 \ W_{ac}^{-1.41}$.0028	.075	.015	.304	79.8	3.3					
Northwest Region $(n = 29)$											
$Q_2 = 1.57 \ W_{ac}^{1.67}$.004	.076	.021	.318	84.3						
$Q_5 = 5.04 \ W_{ac}^{-1.50}$.004	.066	.017	.294	76.4						
$Q_{10} = 9.68 \ W_{ac}^{1.40}$.004	.069	.015	.297	77.3						
$Q_{25} = 21.3 \ W_{ac}^{1.30}$.004	.075	.012	.302	79.1						
$Q_{50} = 36.1 \ W_{ac}^{1.24}$.005	.081	.011	.312	82.3						
$Q_{100} = 60.0 \ W_{ac}^{-1.19}$.005	.089	.011	.325	86.7						
$Q_{200} = 92.7 \ W_{ac}^{-1.16}$.006	.100	.010	.342	92.9						
$Q_{500} = 164 \ W_{ac}^{1.12}$.007	.120	.009	.370	103.4						
		Northwest Foothi	ills Region (n = 22)								
$Q_2 = 5.79 \ W_{ac}^{1.23}$.017	.115	.011	.378	106.6	2.7					
$Q_5 = 25.6 \ W_{ac}^{1.09}$.015	.084	.009	.328	87.8	5.1					
$Q_{10} = 54.6 \ W_{ac}^{1.03}$.016	.085	.008	.329	88.3	6.8					
$Q_{25} = 119 \ W_{ac}^{0.969}$.019	.095	.007	.349	95.3	8.4					
$Q_{50} = 194 \ W_{ac}^{0.94}$.022	.108	.007	.371	103.7	9.2					
$Q_{100} = 297 \ W_{ac}^{0.919}$.026	.124	.006	.395	113.6	9.6					
$Q_{200} = 434 \ W_{ac}^{0.905}$.029	.141	.006	.420	124.9	9.9					
$Q_{500} = 682 \ W_{ac}^{0.892}$.035	.166	.006	.454	141.3	10.1					
		Northeast Plain	s Region $(n = 44)$								
$Q_2 = 4.71 \ W_{ac}^{1.36}$.009	.177	.014	.447	137.5	1.8					
$Q_5 = 16.2 \ W_{ac}^{1.32}$.008	.139	.013	.399	115.4	2.7					
$Q_{10} = 30.3 W_{ac}^{1.29}$.008	.128	.012	.385	109.7	3.8					
$Q_{25} = 57.1 \ W_{ac}^{1.26}$.008	.126	.012	.383	108.6	5.1					
$Q_{50} = 83.8 \ W_{ac}^{1.24}$.009	.130	.012	.388	110.9	6.0					
$Q_{100} = 116 \ W_{ac}^{1.23}$.010	.137	.011	.397	114.6	6.7					
$Q_{200} = 156 W_{ac}^{1.22}$.011	.145	.011	.409	119.6	7.2					
$Q_{500} = 217 W_{ac}^{1.20}$.012	.161	.011	.428	128.6	7.6					

East-Central Plains Region (n = 77)												
$Q_2 = 8.26 \ W_{ac}^{1.17}$.007	.149	.010	.408	119.3	2.6						
$Q_5 = 31.4 \ W_{ac}^{1.14}$.006	.106	.010	.349	95.4	4.3						
$Q_{10} = 61.4 \ W_{ac}^{1.12}$.006	.097	.009	.335	90.2	6.1						
$Q_{25} = 120 \ W_{ac}^{1.10}$.006	.099	.009	.338	91.4	8.1						
$Q_{50} = 181 \ W_{ac}^{1.09}$.007	.107	.009	.350	95.8	9.0						
$Q_{100} = 259 \ W_{ac}^{1.08}$.008	.118	.009	.367	102.3	9.6						
$Q_{200} = 355 W_{ac}^{1.07}$.008	.133	.009	.387	110.5	9.8						
$Q_{500} = 515 \ W_{ac}^{1.06}$.010	.157	.008	.418	123.7	9.8						
Southeast Plains Region $(n = 60)$												
$Q_2 = 4.24 W_{ac}^{1.47}$.004	.090	.016	.333	90.9	2.8						
$Q_5 = 15.4 \ W_{ac}^{1.34}$.004	.061	.013	.279	72.7	5.3						
$Q_{10} = 30.2 \ W_{ac}^{1.26}$.004	.054	.012	.263	67.5	8.0						
$Q_{25} = 60.5 \ W_{ac}^{1.18}$.004	.053	.010	.260	66.5	11.0						
$Q_{50} = 93.2 \ W_{ac}^{1.14}$.004	.058	.010	.269	69.4	12.2						
$Q_{100} = 136 \ W_{ac}^{1.09}$.005	.067	.009	.284	74.3	12.6						
$Q_{200} = 192 \ W_{ac}^{1.05}$.006	.079	.008	.304	80.8	12.5						
$Q_{500} = 291 \ W_{ac}^{1.00}$.007	.099	.007	.336	92.2	11.8						
		stone-Central Mou	ntain Region (n = 8)	35)								
$Q_2 = 2.44 \ W_{ac}^{1.52}$.003	.058	.017	.279	71.6	2.7						
$Q_5 = 10.1 \ W_{ac}^{1.29}$.003	.056	.012	.267	67.8	4.1						
$Q_{10} = 21.3 \ W_{ac}^{1.18}$.003	.061	.010	.273	69.7	5.1						
$Q_{25} = 45.9 \ W_{ac}^{1.06}$.004	.073	.008	.291	75.3	6.2						
$Q_{50} = 75.1 \ W_{ac}^{0.979}$.004	.085	.007	.310	81.6	6.6						
$Q_{100} = 115 \ W_{ac}^{0.914}$.005	.098	.006	.330	88.7	6.8						
$Q_{200} = 170 \ W_{ac}^{0.855}$.006	.114	.005	.353	97.1	7.0						
$Q_{500} = 271 \ W_{ac}^{0.787}$.007	.137	.005	.385	109.5	7.0						
Southwest Region $(n = 43)$												
$Q_2 = 1.21 \ W_{ac}^{1.67}$.003	.035	.021	.242	60.5	2.5						
$Q_5 = 4.62 W_{ac}^{141}$.003	.036	.015	.231	57.2	3.5						
$Q_{10} = 8.94 \ W_{ac}^{1.29}$.004	.047	.012	.250	62.8	3.6						
$Q_{25} = 17.9 \ W_{ac}^{1.17}$.005	.066	.010	.284	73.2	3.6						
$Q_{50} = 27.9 \ W_{ac}^{1.09}$.006	.082	.009	.311	82.1	3.6						
$Q_{100} = 41.8 \ W_{ac}^{1.02}$.007	.099	.008	.338	91.3	3.6						
$Q_{200} = 60.3 \ W_{ac}^{0.951}$.008	.117	.007	.364	101.0	3.5						
$Q_{500} = 93.2 \ W_{ac}^{0.875}$.010	.143	.006	.398	114.9	3.5						